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Abstract. The muon transfer rates from hydrogen isotopes (p, d) to 3,4He2+ and 6,7Li3+ ions are calculated
in the hyperspherical close coupling method. Well converged results are obtained. The present rates are
comparable to those of existing calculations for He2+, but they are much larger for Li3+. The resonance
parameters are also calculated for resonances near the (Hµ)1s threshold.

PACS. 36.10.Dr Positronium, muonium, muonic atoms and molecules

1 Introduction

The transfer process of negative muons (µ) from hydrogen
isotopes (H = p, or d) to helium nucleus is important in
the muon catalyzed fusion [1,2]. Helium nuclei are pro-
duced by the fusion process and the helium atoms act as
a muon scavenger by direct muon capture in the fusion
or by the muon transfer to helium. The muon transfer
from the muonic hydrogen to heavier elements is also im-
portant. When a small amount of the heavier element is
added to pure hydrogen target, it may strongly influence
the process of the muon catalyzed fusion [3–5].

There are two models for the muon transfer mechanism
to elements of Z > 2 [2,6,7,9], involving the direct transfer

Hµ + Z → Zµ + H, (1)

and the molecular transfer

Hµ + Z → HµZ → Zµ + H (2)

where a metastable HµZ molecule is formed as an in-
termediate state and its decay leads to the muon trans-
fer. The process (2) is much faster than that of (1) for
the case of He [2,6] and the process (1) is expected to
be more important for elements with higher Z [2]. The
rates for the process (1) have been calculated as Coulomb
three-body problems by neglecting atomic electrons com-
pletely. The aim of the present work is to calculate reliable
muon-transfer rates for the collisions 3,4He2++(Hµ)1s and
6,7Li3+ + (Hµ)1s systems using the hyperspherical close
coupling (HSCC) method. The studies of such collisions
have many interest as examples of rearrangement scatter-
ings with Coulomb interaction in the final states [4].
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Muon atomic units (m.a.u), where muon mass is set to
unity in addition to � = e = 1, are used throughout this
paper unless otherwise stated.

2 The HSCC method

The HSCC method is a powerful tool to study bound
states and scattering states for three-body systems [11].
The present HSCC method is described in some details
in [12,13]. The internal motion of three particles is de-
scribed by hyperradius ρ and five angular variable Ω in
the hyperspherical coordinates. The total Hamiltonian of
the system is written in terms of ρ and Ω as

H = − 1
2M

(
d2

dρ2
+

5
ρ

d

dρ

)
+ had(ρ, Ω), (3)

with

had(ρ, Ω) =
Λ2(Ω)
2M

+ V (ρ, Ω) (4)

where Λ(Ω) is the five-dimensional grand angular mo-
mentum operator, V is the sum of Coulomb interactions
among three particles, and M is an arbitrary parameter
with dimension of mass, which is taken to be reduced mass
of heavy nuclei here.

The adiabatic channel functions {ϕ(ρ, Ω)} and the adi-
abatic potential Ui(ρ) are defined by the eigen-value equa-
tion

had(ρ, Ω)ϕi(ρ, Ω) =
(

Ui(ρ) − 15
8Mρ2

)
ϕi(ρ, Ω), (5)

where ρ is an adiabatic parameter.
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In the HSCC method, the scattering wave function is
expanded by the product of radial function Fi(ρ) and ϕi as

ΨJΠ(ρ, Ω) =
N∑
i

Fi(ρ)
ρ5/2

ϕi(ρ, Ω) (6)

for each partial wave J and parity Π . Inserting this ex-
pansion in the Shrödinger equation (H − E)ΨJΠ = 0, we
have the coupled differential equations for {Fi}
(
− 1

2M

d2

dρ2
+Ui(ρ)−E

)
Fi(ρ)+

∑
j

Wij(ρ)Fj(ρ)=0, (7)

where E is the total energy in the center of mass system
and Wij(ρ) represents a non-adiabatic coupling. To obtain
the scattering matrix, the wave function in equation (6) is
matched with the scattering boundary conditions in the
Jacobi coordinates at sufficiently large ρ. Since the system
has an arrangement of a charged particle and hydrogenic
atom (ion) in the asymptotic region, the dipole represen-
tation [14] is appropriate as channels in the Jacobi coor-
dinates.

3 Results

The HSCC calculations are carried out for partial waves
J = 0–4. Two kinds of basis sets are adopted both in
3,4He2+ + (Hµ)1s and 6,7Li3+ + (Hµ)1s collisions. Their
asymptotic limits of channels are as follows;

basis set A: He2+ + (Hµ)n=1, H+ + (Heµ)+n=1−3

basis set B: He2+ + (Hµ)n=1, H+ + (Heµ)+n=1−4,

for the He2+ + Hµ collision, and

basis set C: Li3+ + (Hµ)n=1, H+ + (Liµ)2+n=1−3

basis set D: Li3+ + (Hµ)n=1, H+ + (Liµ)2+n=1−4

for the Li3+ + Hµ collision.
The muon transfer rate is defined by λ = N0vσ, where

N0(= 4.25 × 102 /cm3) is the liquid-hydrogen density, v
is the collision velocity, and σ is the muon-transfer cross
section.

3.1 3,4He2+ + (1,2Hµ)1s collisions

The S-wave adiabatic potential curves for the 3He2+ + pµ
system are shown in Figure 1. Each potential curve con-
verges to the atomic energy of (pµ) or (Heµ)+ as ρ →
∞, and the corresponding adiabatic channel function de-
scribes the fragmentation into He2+ +(pµ) or p+(Heµ)+.
The potential curve corresponding to the initial channel,
He2+ +(pµ)n=1, is close to those leading to p+(Heµ)+n=2.
The coupling of (Heµ)+n=2 channels with (pµ)n=1 chan-
nel is considerable for ρ < 15. However, the transfer to
(Heµ)+n=2 channels is less probable at low energies owing
to the Coulomb repulsion between H+ and He+. Thus, the

Fig. 1. The S wave adiabatic potential curves of 3He2+ + pµ
system. The asymptotic fragmentation described by corre-
sponding adiabatic channel function is indicated as p+(Heµ)+n
or He2+ + (pµ)n. The notation εpµ denotes the atomic energy
of (pµ)1s.

Fig. 2. The muon transfer rates for the He2+ + (Hµ)1s col-
lisions. Partial wave rate calculated with basis set B: J = 0
(dashed curve), J = 1 (dot-dashed curve), J = 2 (dot-dot-
dashed curve), J = 3 (dotted curve), J = 4 (solid curve).
Summed rate for J = 0–4: transfer to (Heµ)+n=1 calculated with
basis set B (bold solid curve), transfer to (Heµ)+n=1,2 calculated

with basis set B (bold dashed curve), transfer to (Heµ)+n=1,2

calculated with basis set A (circles). The transfer rate to n = 2
states is negligibly small in the 3,4He2+ + (dµ)1s collisions in
the figure.

muon transfer to the low-lying (Heµ)+n=1 state is dominant
at low energies.

The sum of muon-transfer rates up to J = 4 and their
partial-wave contributions are depicted in Figure 2 for the
center-of-mass collision energy 0.001 ≤ Ec ≤ 100 in eV.
The calculations using basis sets A and B give similar
results, and the convergence is good with respect to the
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Table 1. Comparison of muon transfer rate (106/s) in the
He2+ + (Hµ)1s collision at center-of-mass collision energy Ec.

3He2+ 4He2+ 3He2+ 4He2+

Ec (eV) pµ dµ

0.001 8.18a 8.04a 1.98a 5.30a

0.004 8.13a 7.98a 1.94a 4.52a

110 59 258 552
0.01 8.04a 7.86a 1.87a 3.52a

0.04 7.70a 7.54a 1.60a 1.74a

91b 48b 162b 218b

6.3c 5.5c 1.3c 1.0c

17d 17d 17d 17d

8.4e 6.8e 5.2e 5.0e

0.1 7.25a 9.60a 1.27a 0.92a

82b 42b 126b 134b

8.3e 5.1e

0.4 6.19a 11.6a 0.76a 0.34a

1.0 5.56a 7.11a 0.59a 0.22a

8.1e 4.7e

4.0 6.84a 5.53a 0.62a 0.20a

10.0 16.0a 4.96a 0.68a 0.22a

a Present calculation with basis set A. b Molecular transfer
rate of Kravtsov et al. [6]. c Matveenko and Ponomarev [1].
d Radiative transfer rate of Czaplinski et al. [10]. e Sultanov
and Adhikari [4].

basis set. S-wave is dominant for low collision energy and
the contribution from higher partial waves become large
with increasing energy. The muon transfer of (Heµ)n=2

becomes important for Ec > 10 eV in pµ target. Though
it is negligible for Ec ≤ 100 eV in dµ target, it comes to
contribute for Ec � 100 eV.

The obtained muon transfer rates are compared in Ta-
ble 1 with those of other works involving the perturbed
stationary state (PSS) calculation [1] and the Faddeev-
Hahn-type calculation [4], in which the muon transfer
rates are calculated in the direct muon transfer model (1).
The rates in the PSS calculation are fairly close to the
present ones at Ec = 0.04 eV, but the agreement with
the Faddeev-Hahn-type calculation is rather poor. The
disagreement is worse for the dµ target than for the pµ
target. Table 1 also includes the molecular [6] and the ra-
diative [10] transfer rates, which are much larger than that
of direct transfer.

The D-wave contributions of Figures 2a and 2b show
resonance structures. Figures 3a and 3b, respectively, give
the rate in the resonance region and the adiabatic poten-
tials of the initial channel for the 4He2+ +(pµ)1s collision.
It is well seen from Figure 3b that the adiabatic potentials
of the 4He2++(pµ)1s channel support Feshbach resonances
in J = 0 and 1 and a shape resonance in J = 2. For D-wave
resonance in the 4He2+ +pµ system, the resonance energy
and width are Ec = 0.18 eV and 7 × 10−4 eV, respec-
tively, with the basis set B. The resonance parameter is
derived by fitting the eigen phase sum to the Breit-Wigner
formula with a linear background. Resonances near the
(Hµ)1s threshold in the 3,4He2+ +1,2 Hµ systems are sum-

Fig. 3. (a) The muon transfer rate for energies near the D-
wave resonance in the 4He2+ + (pµ)1s collision. (b) The adi-
abatic potential curves converging to the energy of (pµ)1s for
the 4He2+ + pµ system. The potential curves are for J = 0–3
from the bottom.

Table 2. Resonances associated with (Hµ)1s threshold of the
He2+ + Hµ system. Each resonance is expressed as (Er, Γ )
in eV, where Er is the resonance energy measured from the
(Hµ)1s threshold and Γ is the width. x[y] = x × 10y .

Partial wave 3He2+ + pµ 4He2+ + pµ

J = 0 (−73.70, 5.6[−3])a (−81.69, 3.9[−3])a

(−72.76, 6.4[−3])b (−80.64, 4.7[−3])b

(−73.2, )c (−80.8, )c

J = 1 (−41.73, 2.8[−3])a (−50.51, 2.2[−3])a

(−38.82, 3.1[−3])b (−47.45, 2.5[−3])b

(−41.5, )c (−50.0, )c

J = 2 (7.2, 1.9)a (0.205, 7.9[−4])a

(7.2, 1.9)d (0.181, 6.7[−4])d

3He2+ + dµ 4He2+ + dµ

J = 0 (−70.90, 3.5[−4])a (−79.36, 9.9[−5])a

(−69.37, 1.9[−4])b (−77.49, 4.8[−5])b

(−71.0, )c (−79.4, )c

J = 1 (−48.33, 3.8[−4])a (−58.14, 1.3[−4])a

(−46.31, 2.1[−4])b (−55.74, 7.9[−5])b

(−48.5, )c (−58.3, )c

J = 2 (−9.46, 1.7[−4])a (−20.48, 9.5[−5])a

(−7.11, 1.2[−4])b (−17.49, 6.9[−5])b

J = 3 (30.4, 20)a (20.5, 8.1)a

(30.0, 20)d (20.3, 7.8)d

a Present calculation with basis set A. b Belyaev et al. [15].
c Kravtsov and Mikhailov [16]. d Present calculation with basis
set B.

marized in Table 2, where the results of Belyaev et al. [15]
and Kravosov and Mikhailov [16] are included for compar-
ison. The calculations for resonances below the (Hµ)n=1

threshold are treated in several works, which are given
in [15,16]. The present results are consistent with those
of [15,16].
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Fig. 4. The S wave adiabatic potential curves of 6Li3++pµ sys-
tem. The asymptotic fragmentation described by correspond-
ing adiabatic channel function is indicated as p + (Liµ)2+n or
Li3+ + (pµ)n. The notation εpµ denotes the atomic energy of
(pµ)1s.

3.2 6,7Li3+ + (1,2Hµ)1s collisions

The S-wave adiabatic potential curves for the 6Li3+ + pµ
system are shown in Figure 4 as an example of Li3+ + Hµ
systems. The muon transfer into (Liµ)n=2 is predominant
at low energy collisions. The potential curves which de-
scribe fragmentation p + (Liµ)2+n=3 are repulsive, and the
muon transfer into (Liµ)n=3 is suppressed at low energies.
The contributions of transfer to states with n = 1 and
n = 3 are negligible for Ec ≤ 100 eV, but the transition
to the n = 3 states is expected to be important for higher
energies.

The muon transfer rates for the 6,7Li3+ + (1,2Hµ)1s

collisions are shown in Figure 5. The rates obtained with
the two basis sets C and D agree well, which shows good
convergence with respect to basis sets. It seems better to
include higher partial-wave contribution for Ec > 10 eV
for dµ target.

The energy dependence of muon transfer rate is more
similar for 6,7Li3+ than for 3,4He2+ in pµ target or dµ
target, since the reduced mass of system is closer to the
mass of pµ or dµ for heavier ion. Peak structures are seen
for J = 2 in pµ target (Figs. 4a, 4b) and for J = 3 in dµ
target (Figs. 4c, 4d). The peak widths are comparable to
the collision energy.

The rates for muon transfer are tabulated in Table 3,
which includes the results of the Faddeev-Hahn-type cal-
culation by Sultanov and Adhikari [4] and the molecular
muon transfer rates calculated by Ivanov et al. [8]. The
present rates are much larger than those of the Faddeev-
Hahn-type calculation and those of the molecular trans-

Fig. 5. The muon transfer rates for the Li3+ + (Hµ)1s col-
lisions. Partial wave rate calculated with basis set D: J = 0
(dashed curve), J = 1 (dot-dashed curve), J = 2 (dot-dot-
dashed curve), J = 3 (dotted curve), J = 4 (solid curve).
Summed rate for J = 0–4: basis set C (circle), basis set D
(bold solid curve).

Table 3. Comparison of muon transfer rate (108/s) for the
Li3+ + (Hµ)1s collisions at center-of-mass collision energy Ec.
x[y] = xy.

6Li2+ 7Li2+ 6Li3+ 7Li3+

Ec (eV) pµ dµ

0.001 9.95a 9.57a 1.50a 1.21a

0.004 9.84a 9.45a 1.42a 1.11a

5.0[−3]c 3.8[−3]c 2.78[−2]c 3.17[−2]c

0.01 9.67a 9.25a 1.28a 0.96a

0.04 9.15a 8.67a 0.95a 0.63a

1.9[−2]b 1.6[−2]b

3.8[−3]c 2.8[−3]c 9.1[−3]c 8.2[−3]c

0.1 8.82a 8.21a 0.71a 0.43a

1.9[−2]b 1.6[−2]b

3.1[−3]c 2.3[−3]c 5.6[−3]c 4.7[−3]c

0.4 9.30a 8.35a 0.68 0.36a

1.0 10.7a 9.59a 1.02a 0.50a

1.2[−2]b 1.2[−2]b

1.6[−3]c 1.2[−3]c 1.6[−3]c 1.2[−3]

4.0 22.1a 30.3a 1.43a 0.80a

10.0 30.1a 25.8a 2.41a 2.46a

a Present calculation with basis set B. b Sultanov and Adhikari
[4]. c Molecular muon transfer rate of Ivanov et al. [8].

formation, indicating that the direct muon transfer is im-
portant in the muon transfer to Li.

The potential curves for the Li3+ + (Hµ)1s channel
support resonances for low partial waves. The resonance
parameters are tabulated in Table 4. The present calcula-
tion gives deeper resonance energies than the calculation
of Kravtsov et al. [17]. The widths are broader for Li ions
than those of He ions. The larger width is consistent with
larger cross-section for Li than that for He, since the
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Table 4. Resonances associated with (Hµ)1s threshold of the
Li3++Hµ system. Each resonance is expressed as (Er, Γ ) in eV,
where Er is the resonance energy measured from the (Hµ)1s

threshold and Γ is the width. x[y] = x × 10y .

Partial wave 6Li3+ + pµ 7Li3+ + pµ

J = 0 (−18.4, 0.25)a (−19.3, 0.23)a

(−17.6, )b (−18.5, )b

J = 1 (−8.4, 0.17)a (−9.3, 0.16)a

(−6.96, )b (−7.9, )b

J = 2 (5.78, 4.6)a (5.15, 3.6)a

6Li3+ + dµ 7Li3+ + dµ

J = 0 (−20.25, 1.4[−2])a (−21.40, 6.7[−3])a

(−19.8, )b (−21.0, )b

J = 1 (−13.52, 1.7[−2])a (−14.76, 1.0[−2])a

(−12.9, )b (−14.1, )b

J = 2 (−1.62, 1.5[−2])a (−2.87, 1.2[−2])a

(−0.84, )b (−2.02, )b

J = 3 (10.0, 7.0)a (9.98, 7.0)a

a Present calculation with basis set C. b Kravtsov et al. [17].

resonances (HµZ) below the (Hµ)1s threshold mainly de-
cay through couplings with H+ + (Heµ)+n=1 channels and
with H+ + (Liµ)2+n=2 channels for He and Li, respectively.

4 Summary

The HSCC method is applied to calculate the three-body
muon transfer rate in the He2++(Hµ)1s and Li3++(Hµ)1s

collisions, and electrons in He and Li are completely ne-
glected. The present calculation shows good convergence
with respect to the basis sets, and it seems to be reliable.

The transfer to (Heµ)+n=1 is dominant at lower energies
in the He2+ collision. The present transfer rate is within
the same order as those calculated in the three body

treatments [1,4,9]. The molecular transfer [6] is roughly
10 times faster than the direct transfer in the He + pµ
system and 100 times in the He + dµ system.

For the case of Li3+ impact, (Liµ)2+ is formed in the
n = 2 states for Ec ≤ 100 eV. The present direct trans-
fer rates are about 50 times as large as those calculated
with the Faddeev-Hahn-type calculation [4] and are three
orders of magnitude larger than the molecular transfer
rates [7].
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